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Abstract
  Under the assumption of the local independence, latent 

class analysis can be reduced to a parametric multinomial 

distribution. For sensitivity analysis in a multinomial dis-

tribution model, in general, a needed diagnostics is the 

diagnostics that measures the influence by deleting a single 

cell, rather than an observation. In this paper we apply 

Andersen's diagnostics, which is suggested for a paramet-

ric multinomial distribution, to two artificial latent class 

models and data set analysed by Stouffer and Toby, and 

examine their numerical results. Also it is shown that the 

reliability of estimated parameters in latent class analysis 

is evaluated by thier asymptotic variances at ML estimates.

1  Introduction
In regression analysis special attention is devoted to iden-

tifying observations, which give a significant influence to 

the model fit or to the estimated regression coefficients (see 

Cook and Weisberg, 1982). Pregibon (1981) has discussed 

the sensitivity to outlying responses and extreme points for 

a maximum likelihood fit of a logistic regression model. 

Similar consideration is devoted to principle component 

analysis (Critchley, 1985) and factor analysis (Tanaka and 

Odaka, 1989) by using the influence function. For a multi-

nomial distribution, Andersen (1992) has given diagnostics 

as measures of model deviation and of the influence of de-

leting a single cell. Andersen's diagnostics is considered as 

a useful tool for sensitivity analysis in latent class analysis, 

since by the assumption of local independence it can be re-

duced to a multinomial distribution. In Section 2, we sum-

marize latent class analysis and Andersen's diagnostics. In 

section 3, from the viewpoints of Andersen's diagnostics 

and aymptotic variances, we will investigate two artificial 

latent class models and data set examined by Stouffer and 

Toby (1951), Lazersfeld and Henry (1968), and Good-

man (1974a, 1975, 1979) (also see, McCutcheon, 1987; 

Hagenaars and McCutcheon, 2002).

2   Latent Class Analysis and Andersen's Diagnostics
Latent class analysis (LCA) is a technique for analyzing 

relationships in categorical data. The basic premise of the 

study of latent variables is that the latent variable explains 

the relationships between the observed variables. There are 

several typical methods for obtaining estimates of param-

eters in LCA (Green, 1951; Gibson, 1955; MacHugh, 1956, 

et al.). We can use here the maximum likelihood method 

in analyzing sensitivity in LCA by the assumption of local 

independence that the relationships observed among a set 

of variable are found to be zero within the categories of the 

latent variable. Suppose that there are n items and m latent 

classes and that for each item, an individual belongs to one 

and only one of m classes. Under the condition of local in-

dependence latent structure equation is, then, written as
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where the latent class probability ( wt ) is the probability that 

a randomly selected observation in the sample is located in 

latent class t , the conditional probability ( πit ) is the proba-

bility that an individual of a latent class t responds positively 

to item i , and (y 1
(s), . . . , yn

(s)) with yi
(s)=0 or 1 ( i=1, . . . , n ) 

denotes the s - th response pattern (cell s ), where for item i 
in pattern s , yi

(s)=0 indicates the negative response and yi
(s)=1 

the positive response. Then ηs represents the probability for 

the s - t h response pattern. For a single latent variable, we 

can express the restriction as  wt =1. 

　Let I =2 n and n =( n 1, . . . , nI ) be the frequency vector 

for I response patterns, then n ～ Mul ( N , η (θ)) , where 

N =  nj and θ=( w 1, . . . , wm -1, π11, . . . , πnm ) .

　In a multinomial model the quantities of interest are the 

observed counts in the cell. As pointed out by Andersen 

(1992), the term in the likelihood function corresponding 

to cells are not independent, hence it does not make sense 

merely to remove a term in the likelihood function. An-

dersen (1992) derives Cook's distance by substituting the 

cell probabilities by the conditional probabilities given that 

a cell is omitted and then forming the log-likelihood func-

tion as a sum of contributions from the remaining cells, and 

further shows that Cook's distance can be approximated by 

an expression which does not need a re-estimation of the 

parameters. Let D =( dsp )= logηs / θp , I×P , P being 

m ( n +1)-1 and V =diag(Nηs ), s =1, . . . , I . The two im-

portant diagnostics measures that he gives are as follows: 

First, the standardized residuals 

　where  ,  being the vector of ML estimates 

based on all observations, and  is hs evaluated at , 

where wpq is the element of 

　Second, for the parametric multinomial distribution, 

analogue of Cook's distance 

 （1）

(s) is the vector of parameter estimates obtained from 

the conditional distribution given that no observations 

fall in cell s – and, more specifically, it is the solution to 
* *

 which is the conditional probability of an observation 

being in cell j , given that the observation is not in cell s . 
D and V are evaluated at ML estimate . Using one-step 

approximation to   by Pregibon(1981), the equation (1) 

yields

 （2）

The values close to one of the leverage defined as

 （3）

worsen the approximation (2).

3  Numerical Examination
First, let us explain the notation appeared in the follow-

ing tables. M(MLe) , V(MLe) , and M( a . v .) represent, 

respectively, the mean of MLe ś , the variance of MLE´sand 

the mean of the asymptotic variance of MLE ś based on all 

simulations' evaluations.

1．Example 1
　Table 1 and Table 2 represent the results of the simula-

tion of two artificial models with n =4 and m =2 . In this 

case we are interested in the comparison of the sample var-

iances of estimates based on simulation with thier asymp-

totic variances at ML estimates. The difference between 

model 1 and model 2 is the conditional probabilities of the 

fourth item (n=4) given each latent class( i , e ., in model 1, 
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π41=0.5 and π42=0.4 ; in model 2, π41=0.8 and π42=0.2 ). 

The results are summarized as follows:

1.  The latent class probability w t in model 1 seems to be 

biased, but that in model 2 seems to be unbiased.

2.  The estimates of the latent probability w1 and the con-

ditional probabilities ｛πit ｝in model 2 as a whole are 

much better than those of model 1.

3.  The sample variances of estimates in model 1 are larger 

than those of model 2 except the variances of π41 and 

π42.

4.  The most important thing is, however, that in both 

model, asymptotic variances at ML estimates give far 

well approximations to the sample variances of the latent 

parameters, hence this suggests that the reliability of pa-

rameters can be evaluated by their asymptotic variances 

at ML estimates.

　Table 3 shows the approximate values of Cook's distance 

given by approximation (2),  , and the leverages (3), L , 

for 24 response patterns. The values of the leverage indicate 

that one-step estimates to  give good approximation to 

(1), C . In this case the approximate Cook's distances show 

that the influence by deleting some cell is relatively small 

in both models.

2．Example 2
　Table 4 is the results of universalistic and particularistic 

values data (see, for example, Hagenaars and McCutcheon, 

2002; McCutcheon, 1987), which consists of the 16-celled 

crosstabulation of the four survey items, examined earlier 

by Toby and Stouffer (1951), Lazarsfeld and Henry (1968), 

and Goodman (1974a,1975, 1979). Table 5 shows the ap-

proximate Cook's distances and the exact Cook's distances 

when a cell is deleted, and the standardized residuals and 

the leverages. The one-step approximates and exact esti-

mates to  are shown in Table 6. Lazarsfeld and Henry 

(1968), and Goodman (1974a,1975, 1979). Table 5 shows 

the approximate Cook's distances and the exact Cook's dis-

tances when a cell is deleted, and the standardized residu-

als and the leverages. The one-step approximates and exact 

estimates to  are shown in Table 6.
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　We shall now investigate the following five points: 1) 

one-step approximation and exact estimates to  , 2) ap-

proximate Cook's distance and exact Cook's distant, 3) the 

influence on ML estimates by deleting a cell, 4) the reli-

ability on the ML estimates and 5) the standardized residu-

als. 

　From the values of leverages of Table 5, the approximate 

Cook's distances by one-step approximation give good ap-

proximations to the exact Cook's distances except cell No. 

8, 12 and 14 - 16, for which we could not obtain exact esti-

mates to   because of the occurrence of improper solu-

tions, which lie outside interval [0,1], in the iterative proc-

ess of the Fisher scoring method and for which values of 

leverage in turn are 0.985, 0.991, 0.993, 0.998, and 0.999. 

Judging from approximate Cook's distance, in particular, 

it is considered that deletion of cell No. 12 (approximate 

Cook's distance = 25.24), No. 15 (= 76.46), No. 16 (= 

557.6) give considerable effect. On the other hand, since in 

this data all standardized residuals | r |'s are below 1.5, we 

can not find out any influential cell from the viewpoint of 

these residuals. Table 6 represents the one-step and exact 

estimates to . Excluding (8) , (11) , (12) , (14-16), 

the one-step approximations as a whole are fairly good 

for exact estimates  and thier estimates considerably 

coincide with ML estimates  in Table 4 obtained by using 

full-data, while one-step approximations of (8) , (11) , 

(12) , (14-16) differ from  significantly. In particular, No. 

8 ( π12=-0.54 ), No. 15 ( π42=2.31 ), No. 16 ( w 1=2.216, 

π42=2.62 ) are possessed of the improper solutions. Hence, 

from the viewpoint of Cook's distance, we will conclude 

that cell No.12, 15, 16 among No. 8, 11, 12, 14, 15 and 16 

are considered to be influential and that it appears from the 

asymptotic variances shown in Table 4 that the reliability 

of π42 (asymptotic variance = 0.0086), π32 (= 0.0042), π22 
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(= 0.0040), and w 1 (= 0.0032) are lower than that of the 

others.
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