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Numerical Examination on Sensitivity in Latent Class Analysis

by Andersen's Diagnostics

Abstract

Under the assumption of the local independence, latent
class analysis can be reduced to a parametric multinomial
distribution. For sensitivity analysis in a multinomial dis-
tribution model, in general, a needed diagnostics is the
diagnostics that measures the influence by deleting a single
cell, rather than an observation. In this paper we apply
Andersen's diagnostics, which is suggested for a paramet-
ric multinomial distribution, to two artificial latent class
models and data set analysed by Stouffer and Toby, and
examine their numerical results. Also it is shown that the
reliability of estimated parameters in latent class analysis

is evaluated by thier asymptotic variances at ML estimates.

1 Introduction

In regression analysis special attention is devoted to iden-
tifying observations, which give a significant influence to
the model fit or to the estimated regression coefficients (see
Cook and Weisberg, 1982). Pregibon (1981) has discussed
the sensitivity to outlying responses and extreme points for
a maximum likelihood fit of a logistic regression model.
Similar consideration is devoted to principle component
analysis (Critchley, 1985) and factor analysis (Tanaka and
Odaka, 1989) by using the influence function. For a multi-
nomial distribution, Andersen (1992) has given diagnostics
as measures of model deviation and of the influence of de-
leting a single cell. Andersen's diagnostics is considered as

a useful tool for sensitivity analysis in latent class analysis,
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since by the assumption of local independence it can be re-
duced to a multinomial distribution. In Section 2, we sum-
marize latent class analysis and Andersen's diagnostics. In
section 3, from the viewpoints of Andersen's diagnostics
and aymptotic variances, we will investigate two artificial
latent class models and data set examined by Stouffer and
Toby (1951), Lazersfeld and Henry (1968), and Good-
man (1974a, 1975, 1979) (also see, McCutcheon, 1987;
Hagenaars and McCutcheon, 2002).

2 Latent Class Analysis and Andersen's Diagnostics
Latent class analysis (LCA) is a technique for analyzing
relationships in categorical data. The basic premise of the
study of latent variables is that the latent variable explains
the relationships between the observed variables. There are
several typical methods for obtaining estimates of param-
eters in LCA (Green, 1951; Gibson, 1955; MacHugh, 1956,
et al). We can use here the maximum likelihood method
in analyzing sensitivity in LCA by the assumption of local
independence that the relationships observed among a set
of variable are found to be zero within the categories of the
latent variable. Suppose that there are n items and m latent
classes and that for each item, an individual belongs to one
and only one of m classes. Under the condition of local in-
dependence latent structure equation is, then, written as

n ()

y =y®
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where the latent class probability ( w,) is the probability that
a randomly selected observation in the sample is located in
latent class ¢, the conditional probability ( 7 ;) is the proba-
bility that an individual of a latent class ¢ responds positively
toitem 7, and (v,%, ..., 9, with v."=0or 1 (i=1, ..., n)
denotes the s - th response pattern (cell s ), where for item 7
in pattern s , ¥,"=0 indicates the negative response and y,”=1
the positive response. Then 7 ; represents the probability for
the s - th response pattern. For a single latent variable, we
can express the restriction as Z;’Ll w,=1.

Let /=2"and n =(7n,, ..., n;) be the frequency vector
for / response patterns, then 7 ~ Mul (N, n (#)) , where
N=Ximand O=(w, ... 00,0 Ty o).

In a multinomial model the quantities of interest are the
observed counts in the cell. As pointed out by Andersen
(1992), the term in the likelihood function corresponding
to cells are not independent, hence it does not make sense
merely to remove a term in the likelihood function. An-
dersen (1992) derives Cook's distance by substituting the
cell probabilities by the conditional probabilities given that
a cell is omitted and then forming the log-likelihood func-
tion as a sum of contributions from the remaining cells, and
further shows that Cook's distance can be approximated by
an expression which does not need a re-estimation of the
parameters. Let D =(d,)=01logn,/ 08 ,, [XP , P being
m (n+1)-1 and V=diag(Nn,),s=1,...,1.The two im-
portant diagnostics measures that he gives are as follows:

First, the standardized residuals

ry = (1 = N/ N1 = iy = hy)

where 7 =n(0) , § being the vector of ML estimates

based on all observations, and }Az.y is 1, evaluated atd R

P P
hs = N Z Z(Blog 15/06,)(d1ogn,/00,)wP,
p=1 g=1

where w,, is the element of D’V D.

Second, for the parametric multinomial distribution,

analogue of Cook's distance
Cy = (0—0(s)) D'VD® - 0(5))/ P. (D

A(s) is the vector of parameter estimates obtained from
the conditional distribution given that no observations
fall in cell s — and, more specifically, it is the solution to
Z#Snj@logn;/ﬁHp =0(p=1,---,P) with n; =n;/(1-
1s), which is the conditional probability of an observation
being in cell 7 , given that the observation is not in cell s .
D and V are evaluated at ML estimate § . Using one-step
approximation to § by Pregibon(1981), the equation (1)
yields

Cy = (rihe/(1 =75 = b))/ P. 2)
The values close to one of the leverage defined as
L = hs/(1 = 7). (3)
worsen the approximation (2).

3 Numerical Examination

First, let us explain the notation appeared in the follow-
ing tables. M(MLe) , V(MLe) , and M( a . v .) represent,
respectively, the mean of MLe§ , the variance of MLE sand
the mean of the asymptotic variance of MLES based on all

simulations' evaluations.

1. Example 1

Table 1 and Table 2 represent the results of the simula-
tion of two artificial models with 72 =4 and 2 =2 . In this
case we are interested in the comparison of the sample var-
iances of estimates based on simulation with thier asymp-
totic variances at ML estimates. The difference between
model 1 and model 2 is the conditional probabilities of the

fourth item (n=4) given each latent class( z, ¢ ., in model 1,
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7,=0.5and 7,,=04 ; in model 2, 7,=0.8 and 7,,=0.2).

The results are summarized as follows:

1. The latent class probability 2, in model 1 seems to be
biased, but that in model 2 seems to be unbiased.

2. The estimates of the latent probability ; and the con-
ditional probabilities {7, in model 2 as a whole are
much better than those of model 1.

3. The sample variances of estimates in model 1 are larger
than those of model 2 except the variances of 7, and
T .

4. The most important thing is, however, that in both
model, asymptotic variances at ML estimates give far
well approximations to the sample variances of the latent
parameters, hence this suggests that the reliability of pa-
rameters can be evaluated by their asymptotic variances
at ML estimates.

Table 3 shows the approximate values of Cook's distance

given by approximation (2), € , and the leverages (3), L ,

for 2 response patterns. The values of the leverage indicate

that one-step estimates to A(i) give good approximation to

(1), C . In this case the approximate Cook's distances show
that the influence by deleting some cell is relatively small

in both models.

2. Example 2

Table 4 is the results of universalistic and particularistic
values data (see, for example, Hagenaars and McCutcheon,
2002; McCutcheon, 1987), which consists of the 16-celled
crosstabulation of the four survey items, examined earlier
by Toby and Stouffer (1951), Lazarsfeld and Henry (1968),
and Goodman (1974a,1975, 1979). Table 5 shows the ap-
proximate Cook's distances and the exact Cook's distances
when a cell is deleted, and the standardized residuals and
the leverages. The one-step approximates and exact esti-
mates to 9(1’) are shown in Table 6. Lazarsfeld and Henry
(1968), and Goodman (1974a,1975, 1979). Table 5 shows
the approximate Cook's distances and the exact Cook's dis-
tances when a cell is deleted, and the standardized residu-
als and the leverages. The one-step approximates and exact

estimates to (i) are shown in Table 6.

Tabele 1 Results of Simulation: Sample size = 1000

Number of Simulation = 390

wi T 21 731 741 T2 22 732 42
Model 1 .6 .6 7 7 5 4 3 2 4
M(MLe) | 564 613 731 717 508 397 290 219 397
V(MLe) | .0194 .0016 .0055 .0073 .0012 .0031 .0092 .0086 .0020
M(a.v.) | .0271 .0020 .0084 .0112 .0012 .0029 .0137 .0153 .0018

Table 2 Results of Simulation: Sample size = 1000
Number of Simulation = 496

wi ot 21 731 41 T2 22 32 42
Model 2 .6 .6 7 7 .8 4 3 2 2
M(MLe) | 604 598 .699 .700  .800  .401 295 197 193
V(MLe) | .0034 .0006 .0011 .0012 .0015 .0013 .0016 .0021 .0031
M(a.v.) | .0031 .0006 .0009 .0012 .0014 .0011 .0016 .0021 .0032
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Table 3 C and L of Simulation of Model 1 and Model 2

Cell No. Response C L
Model 1 Model2 Model 1 Model 2
1 1111 523 .580 187 .830
2 1110 263 304 .663 705
3 1101 216 237 .660 .678
4 1100 .075 .083 430 430
5 1011 218 181 .639 .638
6 1010 .094 .056 428 .345
7 1001 125 .055 501 .340
8 1000 274 352 .681 763
9 0111 167 211 .589 .646
10 0110 157 .067 .566 338
11 0101 .066 071 .370 404
12 0100 .381 276 122 713
13 0011 .056 .081 .345 446
14 0010 .330 315 736 128
15 0001 271 414 .667 172
16 0000 .805 .866 .846 .884

We shall now investigate the following five points: 1)
one-step approximation and exact estimates to 8(i) , 2) ap-
proximate Cook's distance and exact Cook's distant, 3) the
influence on ML estimates by deleting a cell, 4) the reli-
ability on the ML estimates and 5) the standardized residu-
als.

From the values of leverages of Table 5, the approximate
Cook's distances by one-step approximation give good ap-
proximations to the exact Cook's distances except cell No.
8, 12 and 14 - 16, for which we could not obtain exact esti-
mates to (i) because of the occurrence of improper solu-
tions, which lie outside interval [0,1], in the iterative proc-
ess of the Fisher scoring method and for which values of
leverage in turn are 0.985, 0.991, 0.993, 0.998, and 0.999.
Judging from approximate Cook's distance, in particular,
it is considered that deletion of cell No. 12 (approximate

Cook's distance = 25.24), No. 15 (= 76.46), No. 16 (=

557.6) give considerable effect. On the other hand, since in
this data all standardized residuals | 7 I's are below 1.5, we
can not find out any influential cell from the viewpoint of
these residuals. Table 6 represents the one-step and exact
estimates to (i) . Excluding § (8),9 (11), 9 (12) , § (14-16),
the one-step approximations as a whole are fairly good
for exact estimates 9(1') and thier estimates considerably
coincide with ML estimates § in Table 4 obtained by using
full-data, while one-step approximations of § (8) , 8 (11) , §
(12) ,  (14-16) differ from @ significantly. In particular, No.
8 ( m,=-0.54), No. 15 ( 7 ,=2.31), No. 16 ( w =2.216,
T4,=2.62 ) are possessed of the improper solutions. Hence,
from the viewpoint of Cook's distance, we will conclude
that cell No.12, 15, 16 among No. 8, 11, 12, 14, 15 and 16
are considered to be influential and that it appears from the
asymptotic variances shown in Table 4 that the reliability

of 7,y (asymptotic variance = 0.0086), 73, (= 0.0042), 74,
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(= 0.0040), and w , (= 0.0032) are lower than that of the

others.

Table 4 Results of Universalistic and Particularistic Values Data

w1 i1 21 731 Tt41 12 22 32 42
MLe | 721 286 646 670 868  .007 .074  .060 231
a.v. | .0032 .0016 .0024 .0024 .0015 .0007 .0040 .0042 .0086

Table 5 r, C, C, L of Universalistic and Particularistic Values Data
Cell No. Response Frequency r ¢ C L
1 1111 20 1.329 0313  0.185 0.614
2 1110 2 -0.409 0.007  0.006  0.264
3 1101 6 -0.995  0.061 0.058  0.358
4 1100 1 -0.268  0.001  0.001  0.153
5 1011 9 -0.079  0.0004 0.0004  0.370
6 1010 2 0.538  0.007  0.007  0.170
7 1001 4 -0.332 0.005 0.005 0.283
8 1000 1 0.304 0.683 - 0.985
9 0111 38 -1.156 0315 0.323  0.679
10 0110 7 0.255 0.009  0.009  0.558
11 0101 25 1.352 0376 0391  0.649
12 0100 6 -1.382  25.24 - 0.991
13 0011 24 0.134  0.004 0.004 0.671
14 0010 6 -0.295  1.301 - 0.993
15 0001 23 -1.293  76.46 - 0.998
16 0000 42 1.418  557.6 - 0.9996
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Table 6 Universalistic and Particularistic Values Data

Latent Prob. wi T o1 31 41 T2 o 3 T4
One-Step 6(1) | 746 231 604 .629 .845 003 .051 .035 .183
Exact 753 233 603 627 844 .003 .046 .032 .171
One-Step 6(2) | .725 289 .647 .671 860 .005 .069 .055 .233
Exact 725 289 647 671 860 .005 .070 .055 .233
One-Step 6(3) | 731 302 653 .647 .871 .004 066 .067 .219
Exact 730 302 653 649 871 .004 066 .067 .220
One-Step O4) | 724 287 .646 .668 864 .006 071 .058 .229
Exact 724 287 646 667 864 .006 .070 .058 .229
One-Step 6(5) | 722 288 644 671 .868 .007 .074 .060 .230
Exact 721 288 644 671 868 .007 .074 .060 .230
One-Step 66) | 714 285 652 .671 .875 .008 077 .067 .233
Exact 714 285 652 671 876 .008 .078 .067 .234
One-Step 6(7) | 726 289 .640 .664 868 .007 .072 .059 .223
Exact 27 289 640 663 867 .007 071 .059 222
One-Step 6(8) | 741 290 639 .663 .864 -054 069 .056 .223
Exact - - - - - - - - -

One-Step 69) | .729 260 .688 .710 .886 015 074 .062 .242
Exact 730 260 689 710 886 .015 .074 .064 .243
One-Step 6(10) | 714 290 .646 .670 .878 .008 .079 .067 .231
Exact 714 290 645 670 878 .008 .079 .067 .231
One-Step 6(11) | 675 317 639 745 865 .012 .091 .061 .285
Exact 676 318 639 746 865 .012 .088 .062 .276
One-Step 6(12) | 474 327 636 748 892 015 935 .079 .289
Exact - - - - - - - - -

One-Step 6(13) | 716 290 654 .670 .867 .007 074 .062 .236
Exact 716 290 654 670 867 .007 .074 .063 .236
One-Step 0(14) | 665 296 .662 .668 874 009 .078 259 243
Exact - - - - - - - - -

One-Step 6(15) | .118 338 .698 743 862 .014 .093 .078 231
Exact - - - - - - - - -

One-Step 6(16) | 222 354 705 754 893 .106 984 825 2.62
Exact - - - - - - - - -
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