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A Numerical Study for Stability of Solutions in
Latent Class Analysis by Ridge Approach

Tsukio Morita

ABSTRACT. This paper aims to show, through a numerical study, the fact that
the latent parameters are extremely improved by using Gibson’s method with
a ridge parameter k. We will also propose a criterion for choosing an optimal
value k from graphical considerations based on the relation between the ridge
parameter k£ and a stability measure.

1. Introduction

Latent class anlysis aims to-explain the response patterns of indivisuals by latent
variables from data with the dichotomous responses. This analysis is widely used
in social research. There are several methods which obtain the solutions from
latent class analysis data. Methods by Green [1] and Gibson [2] are based on
the structual equations, while MacHugh’s [4] method are based on the maximum
likelihood equation. However a stability of solutions in latent class analisys suffers
a serious influence by small sampling errors, so frequently occur a phenomenon of
improper solutions. Ikuzawa [3] has pointed out that Green’s method often causes
unreasonable solutions, and he has proposed a way to evade possibly the difficulty.
Okamoto and Isogai [8] carried out a numerical study on three methods; Gibson’s,
Green’s and Modified Green least squares method and found that the rounding of
the manifest probabilities at the third decimal place affects the estimates of most.
parameters at the first decimal place.

In order to evade instability to which the latent class analysis inherently belongs
and to get the reliability estimates, we have suggested some ideas [5], [6] and [7] so
far. As a result of our study, in comparision between Gibson’s and Green’s method
we showed a superiority of Gibson’s method from numerical or theoretical points of
view. And we have suggested a criterion on the choice of signatures and a stratifier
of Gibosn’s method.

In this paper we consider Gibson’s method with a ridge parameter k& and show
how the Gibson’s solutions are improved by varing k variously. Moreover from
.graphical considerations of parameter k¥ and the stability measure, we shall give a
criterion of choosing the ridge parameter k.

In Section 2 we state the outline of Gibson’s method and in Section 3 propose
the Gibson’s method with the ridge parameter k. In Section 4 we shall show the
results of numerical study.

2. Latent Class Model and Gibson’s Method

Suppose there are n items and m classes and for each item the response of an
individual is dichotomous and that an individual belongs to only one of m classes.
Let us denote by w;(¢t = 1,--- ,m) the probability that an individual belongs to
class t and by 7;: (¢ = 1,--- ,n) the probability that an individual belonging to class
t responds positively to item ¢. We define the probabilities p;, p;; and pijr, which



are called the manifest probabilities. The quantities p;, pij, pijx are , respectively,
the probabilities that an individual responds positively to item i, to both item ¢ and
7, and to item i, j and k simultaneously. Assuming local independence of the third-
order, i.e., the dependence of the response up to three items under the condition
that an individual belongs to any latent class, we obtain

m
Pi = E W T3¢,

t=1

(1) pri; = Zw::ﬂz‘tﬂjz (z # 7),

t=1

Pijk = E W T ey (27 J # Kk # 7),
t=1
where 57" w, = 1.
We call equation (1 ) the latent class model. Let 2,4 = 1 (¢ = 1, --- ,n;d =
1,---,N) when an individual d responds positively to item z, and xz;4 = 0 otherwise,

where N is the size of sample. Then we define the estimators of the manifest
probabilities as follows:

1 X
pi = NE Zid,
d=1
1 X
(2) pi; = }_V_E TidTjd,
d=1
1 X
Pijk = WE TidTjdTkd,
d=1

The purpose of latent class analysis is to estimate the set w,, 7;;, which are called
the latent parameters, from the set p;, p:;, Pijk-

In this paper we discuss not the latent class model with m > 3 but m = 2.
Now we will describe Gibson’s method. For any fixed different two items, z and k,
equation (1) imply the following expression:

(3) T = LleLl_l,
(4) Q = LiDy"‘'La,
where
T = (R? t —1’ R = ( Pk Pjk >, — ( Pj. >’
( (Q'Q) Pik  Pij.k @ Pi Pij,
1 1

1 1
Ly = < T T2 )’ Lz = ( Tj.1 Tj.2 >’

Dy = diag(mk1,7k2), Dw = diag(w;,ws2),

where j,,s =1,--- ,n —2(js # k,%),T,L1, Dy, and D,, are matrices of type 2 x 2,
and R, Q and 'L, are of type 2x(n—1). Item ¢ and k are called the left signature and
the stratifier, respectively, and the other items j;s are called the right signature.
We estimate R and @ from (2) and solve the eigenvalues problem with T of (3), so
that we obtain Dy and L; as the eigenvalues and eigenvectors, respectively. From
equation (4) we can also estimate D, and L, by using the estimate Q and L,
obtained above.
3. Ridge Approach to Gibson’s Method

When solving the eigenvalues problem with 7" by Gibson’s method, the eigenval-
ues and eigenvectors of 7" often become unstable because the matrix Q'Q trends
to a semi-singular matrix ( see [8] ). To avoid this difficulty, we introduce a ridge



parameter k£ which i1s often used in regression analysis, and we will attempt stabi-
lizing the solutions. A matrix 7" in Gibson’s method with the ridge parameter k is
defined as follows:

T = (R'Q)(Q'Q + kI)~1.
We 1nspect an optimal value of k& by varing k according with the choice of a
stratifer and signatures. However we, in general, do not have the criterion on the

choice of k, as well as regression analysis. In this paper we adopt a criterion € which
are suggsted in [7]. And we use FW P as a stability measure:

£ = (trace(T)2 — 4det(T))%,

EWP = {m(z Aw? + Z Z INCARS

=1 t=1

where 7,5 1s the element in first row and second column of T, Any = W — w: and
Aﬂ'zt - 7rzt — T
4. Results of Numerical Study

A latent class model is shown in Table 1. We shall study a numerical model
with m = 2 and n = 4 described in Table 2. We utilized the data by rounding-off
the manifest probabilities, which are generated from Table 2, at the third decimal
place (see [8] ).

Table 1. Latent Class Model

Item
Class 1 2 C Ce . n
1 wy m11 21 Tl
2 wao w12 L TT22 PRI RPN T2
m W Tim T 2m - Trm
Table 2. Numerlcal Model

Item
Class 1 2 3 4
1 .6 .6 7 7 .5
2 4 .4 .3 2 4

In Fig.1 to Fig.12, we show the graphs when varing k. The vertical axis of the
upper graph and the lower graph of each of Figure, respectively, indicates anEWP
value and a criterion € value. Table 3 shows estimates of latent parameters which
are obtained by solving in the eigenvalues problem of T without k& and Table.4
with k£, where k is the point at which an approximate minumum value of EWP is
. attained.

Conclusion

1. The situation of the change of EWP and £ corresponds well each other as seen
from Fig.1 to Fig.12. Actually the value EWP is unknown and therefore we can not
get the graph of EWP on the parameter k, the other the criterion £ is a function in
the only k as given data, thus we can draw the graph and obtain the approximate
value k£ which minimize €. Using this k&, we solve the eigenvalues problem of T.

2. From Table 3 and 4 it is seen that by using a suitable parameter k, the
estimates of latent parameter are drastically improved. For example Case 3 and
Case 10 have improper solutions on the usual Gibson’s method, but our proposal
method introduced the ridge parameter k gives outstanding solutions.

In the forthcoming paper we will report the theoretical validity on Gibson’s
method having the ridge parameter £ and on the criterion .
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Table 3. Estimates by an usual Gibson method

No. | uy Ti1 T2 T31 41 Wiz Too T3z 742 | EWP
1 .32 .65 87 82 .53 .46 .38 .35 .43 .15
2 .33 .65 .84 .84 .52 .46 .39 .33 .43 .15
3 .01 1.03 7.84 .680 .75 .52 .50 47 46 2.99
4 .38 .64 .84 78 .47 .45 .37 .33 45 12
5 .33 .65 .86 .82 52 .46 .38 .34 43 .15
6 .42 .54 .85 72 .52 51 .33 .34 41 11
7 .38 .64 .80 .81 .47 .45 .38 .32 .45 .12
8 .33 .64 .86 .82 .53 .46 .38 .34 42 .15
9 .44 .54 .78 76 52 .51 .35 .31 41 .10
10 .01 1.04 7.34 7.58 .75 .52 .50 .46 .46 3.04
11 27 .64 .96 81 .54 .47 .38 .38 .43 .19
12 27 .67 .90 87 .54 47 41 .36 .43 .18

Table 4. Estimates by new proposal method

No. [ wy 31 72y 7a1 41 712 oz Tas Tas | EWP | k(x1073)
1 .60 .H9 .74 .66 .50 41 .23 .26 .40 .033 .35
2 .58 .60 70 .72 .49 41 .31 19 41 011 31
3 .69 BH57 65 59 51 .43 .30 .30 .35 .066 .10
4 h9 .61 72 .65 .47 .39 .31 .29 .45 .058 .15
5 .60 .58 .70 72 .49 43 .30 A7 41 .017 15
6 .60 .53 .74 .63 51 .50 .28 31 .38 .059 .025
7 .59 .61 .68 .68 .47 .39 .34 .26 .45 .032 .10
8 .59 .58 76 .66 .50 43 .21 27 41 .044 .15
9 .58 53 70 .68 51 .50 .32 27 .39 .047 .025
10 .54 .62 71 .67 50 .40 .34 .30 41 .044 .25
11 59 .5B8 77 .65 50 .44 21 .29 .40 .050 .25
12 .60 .59 71 .70 .59 42 .29 .20 .42 .009 27
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